首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   34篇
  国内免费   49篇
化学   144篇
晶体学   2篇
力学   3篇
综合类   5篇
数学   349篇
物理学   76篇
  2023年   7篇
  2022年   7篇
  2021年   10篇
  2020年   13篇
  2019年   10篇
  2018年   16篇
  2017年   20篇
  2016年   16篇
  2015年   11篇
  2014年   39篇
  2013年   26篇
  2012年   36篇
  2011年   33篇
  2010年   30篇
  2009年   36篇
  2008年   39篇
  2007年   33篇
  2006年   32篇
  2005年   23篇
  2004年   22篇
  2003年   15篇
  2002年   8篇
  2001年   10篇
  2000年   12篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   2篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
排序方式: 共有579条查询结果,搜索用时 250 毫秒
1.
The effect of several Lewis acids on the CBS catalyst (named after Corey, Bakshi and Shibata) was investigated in this study. While 2H NMR spectroscopic measurements served as gauge for the activation capability of the Lewis acids, in situ FT‐IR spectroscopy was employed to assess the catalytic activity of the Lewis acid oxazaborolidine complexes. A correlation was found between the Δδ(2H) values and rate constants kDA, which indicates a direct translation of Lewis acidity into reactivity of the Lewis acid–CBS complexes. Unexpectedly, a significant deviation was found for SnCl4 as Lewis acid. The SnCl4–CBS adduct was much more reactive than the Δδ(2H) values predicted and gave similar reaction rates to those observed for the prominent AlBr3–CBS adduct. To rationalize these results, quantum mechanical calculations were performed. The frontier molecular orbital approach was applied and a good correlation between the LUMO energies of the Lewis acid–CBS–naphthoquinone adducts and kDA could be found. For the SnCl4–CBS–naphthoquinone adduct an unusual distortion was observed leading to an enhanced Lewis acidity. Energy decomposition analysis with natural orbitals for chemical valence (EDA‐NOCV) calculations revealed the relevant interactions and activation mode of SnCl4 as Lewis acid in Diels–Alder reactions.  相似文献   
2.
3.
4.
Covalent organic frameworks (COFs) have gained significant attention as key photocatalysts for efficient solar light conversion into hydrogen production. Unfortunately, the harsh synthetic conditions and intricate growth process required to obtain highly crystalline COFs greatly hinder their practical application. Herein, we report a simple strategy for the efficient crystallization of 2D COFs based on the intermediate formation of hexagonal macrocycles. Mechanistic investigation suggests that the use of 2,4,6-triformyl resorcinol (TFR) as the asymmetrical aldehyde build block allows the equilibration between irreversible enol-to-keto tautomerization and dynamic imine bonds to produce the hexagonal β-ketoenamine-linked macrocycles, the formation of which could provide COFs with high crystallinity in half hour. We show that COF-935 with 3 wt % Pt as cocatalyst exhibit a high hydrogen evolution rate of 67.55 mmol g−1 h−1 for water splitting when exposed to visible light. More importantly, COF-935 exhibits an average hydrogen evolution rate of 19.80 mmol g−1 h−1 even at a low loading of only 0.1 wt % Pt, which is a significant breakthrough in this field. This strategy would provide valuable insights into the design of highly crystalline COFs as efficient organic semiconductor photocatalysts.  相似文献   
5.
Adverse drug reactions are commonly the result of cytochrome P450 enzymes (CYPs) converting the drugs into reactive metabolites. Thus, information about the CYP bioactivation of drugs would not only provide insight into metabolic stability, but also into the potential toxicity. For example, oxidation of phenyl rings may lead to either toxic epoxides or safer phenols. Herein, we demonstrate that the potential to form reactive metabolites is encoded primarily in the properties of the molecule to be oxidized. While the enzyme positions the molecule inside the binding pocket (selects the site of metabolism), the subsequent reaction is only dependent on the substrate itself. To test this hypothesis, we used this observation as a predictor of drug inherent toxicity. This approach was used to successfully identify the formation of reactive metabolites in over 100 drug molecules. These results provide a new perspective on the impact of functional groups on aromatic oxidation of drugs and their effects on toxicity.  相似文献   
6.
The rational selection of organic reactions in polymer synthesis is an important research content of polymer science. In recent years, multicomponent reaction as an efficient and green synthesis method has attracted the wide attention of researchers, injecting new and powerful vitality into the field of polymer synthesis. In the study of multicomponent reaction, researchers found the intersection of multicomponent reaction and click chemistry and put forward the concept of Multicomponent Click Reaction (MCR-Click), which is a kind of Multicomponent Reaction with high activity, atomic economy, and some green chemical properties. The application of MCR in polymer chemistry is reviewed in this paper. It is expected that this reaction will arouse the attention of polymer chemists and play a new role in polymer science.  相似文献   
7.
采用密度泛函理论方法计算偶氮染料类化合物的量子化学参数,研究该类化合物结构与光响应活性的定量构效关系(QSAR),应用多元回归方法建立的方程具有显著统计学意义,并结合紫外光谱结果进行降解过程预测。结果表明:光催化体系中会最先造成偶氮染料的N=N键与萘环的断开,然后再生成其他副产物,副产物再经过电子转移、开环等一系列反应,生成苯环与羧酸类物质等小分子物质,最后被矿化为CO2和H2O。偶氮染料分子结构中苯环或萘环所连接的官能团会优先于苯环本身被降解,其结构对光催化脱色性能影响大小的顺序为:分子中的碳原子数>偶氮键数目>磺酸基数目。而染料分子描述符中影响HLG的顺序为:(MW/S)>(I/O)>n(AR)>n(N=N)。  相似文献   
8.
Four Donor–Acceptor–Donor (D–A–D) type of donor molecules (M1‐M4) with triphenylamine (TPA) as donor moiety, thiophene as bridge, and thiazolothiazole as acceptor unit were designed and its photovoltaic parameters were equated with reference molecule “R.” DFT functional CAM‐B3LYP/6‐31G (d,p) was found best for geometry optimization and TD‐CAM‐B3LYP/6‐31G (d,p) was found suitable for excited state calculations. Among designed donor molecules, M4 manifests suitable lowest band gap of 4.73 eV, frontier molecular orbital energy levels as well as distinctive broad absorption of 455.3 nm due to the stronger electron withdrawing group. The electron‐withdrawing substituents contribute to red shifts of absorption spectra and better stabilities for designed molecules. The theoretically determined reorganization energies of designed donor molecules suggested excellent charge mobility property. The lower λe values in comparison with λh illustrated that these four donor materials would be ideal for electron transfer and M4 would be best amongst the investigated molecules with lowest λe of 0.0177. Furthermore, the calculated Voc of M4 is 2.04 V with respect to PC60BM (phenyl‐C61‐butyric acid methyl ester). This study revealed that the designed donor materials are suitable and recommended for high performance organic solar cell devices.  相似文献   
9.
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   
10.
Theoretical investigation on local electronic structure and stability of the π–π stacking interaction of pyrazinamide (PZA) with armchair (5,5) and zigzag (9,0) single‐walled carbon nanotubes (SWCNTs) is performed using density functional theory (DFT). PZA is physisorbed onto nanotube sidewall through interaction of π orbitals of PZA and SWCNT and the enhanced structural stability of PZA/SWCNT systems is due to weak side‐on rather than the head‐on π‐interactions. The physisorption of PZA onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region and π–π stacked interactions is stronger in (9,0) SWCNT compared to (5,5) SWCNT. The density of states (DOS) analysis show that PZA contributes toward the enhancement of electronic states. Projected DOS and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than PZA. In addition, hybrid DFT calculation which includes the dispersion correction is employed to explain the non‐covalent π–π stacking interaction between PZA and SWCNT. The local density approximation and GGA results are compared with DFT‐D to explain near about accurately the weak nonbonded van der Waals interactions between PZA and SWCNTs. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号